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Light scattering from a randomly occupied optical lattice. I. Born approximation
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A theoretical study of the scattering of light from a randomly occupied optical lattice of resonant atoms is
presented to reveal both the characteristics of the lattice and the properties of light scattered from the lattice. In
the first-order Born approximation we discuss here, a number of interesting effects are established, including
sideband Stokes scattering, a finite angular coherence of the scattered light, and spectral line narrowing.
Specifically, the degree of angular coherence of the scattered light is calculated, and it is shown that such
coherence is strongly influenced by the regularity and size of the underlying lattice structure. The previously
observed phenomenon of the sideband spectral line narrowing is also explained in terms of the localization of
atoms in the trapping potential wells. Important information about the lattice can thus be recovered by ana-
lyzing the scattered light in the Born approximation.
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I. INTRODUCTION

Studies of light scattering have a modern history of ove
hundred years since Rayleigh first successfully explained
blue sky and the associated light polarization puzzle. T
single-scattering approximation that Rayleigh invoked is s
popularly used because of its simplicity; it is not alwa
sufficient, however, particularly when the medium is stron
scattering. Examples of strong scattering include the pro
gation of radiation through the atmospheres of stars and
scattering of sound in sea water@1#.

The subject of radiative transfer was initially of intere
mainly to the astronomical community. Active research
this area by the physics community was largely stimulated
the 1980s by the possibility of localizing light in a random
strongly scattering medium@2#. Weak localization@3–5#, a
phenomenon in which multiple scattering of radiation from
random medium generates an enhanced peak in the b
scattering direction, was experimentally observed in 1985
van Albada, Lagendijk, Wolf, and Maret@4,5#. Weak local-
ization results from the fact that the fields multiply scatter
by a given set of scatterers in one sequence and in the e
path-reversed sequence are in perfect phase, and ther
interfere constructively. Since these mutually reversed
quences of scattering can also form closed loops within
medium, the probability for the radiation to return to its sta
ing point is greatly increased, and the diffusion constan
correspondingly reduced as discussed in Refs.@6,7#. Strong
localization of light, characterized by a nearly complete la
of transmission of light through a strongly scattering m
dium, has also been observed recently in semicondu
powders@8#.

An optical lattice is a periodic arrangement of atoms co
fined in place by laser beams. It is an important system
cause it provides a unique environment for performing p
cision spectroscopy, frequency standards, tests
fundamental physics, and more@9#. It is therefore desirable
to characterize, both theoretically and experimentally, the
namics of the trapped atoms inside the lattice. Light scat
ing, the topic of primary interest in the present paper, f
nishes a convenient approach for this purpose. We will
that the important characteristics of the lattice, such as
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structure of the optical potential, the lattice constant, si
bands, and the number of trapped atoms, can all be infe
from a study of the scattered light in the Born approximatio

When the atoms are trapped at the bottom of the trapp
potential wells, a fully quantum-mechanical consideration
veals the presence of sidebands observed in the spectru
the scattered light. However, since not all of the lattice si
are occupied and the knowledge of which sites are occup
by atoms and which sites are not can only be given in sta
tical terms, the scattered light too has a statistical chara
In spite of the randomness of such a lattice based mediu
qualitative difference from a continuous random medium
that the underlying optical lattice possesses regularity. H
we investigate how this regularity alters the character of li
propagation in an otherwise random medium.

In the present paper, we discuss the scattering of li
from an optical lattice in the first-order Born approximatio
in which the second and higher orders of light scattering
regarded as being negligible. This is an accurate approxi
tion when the atoms scatter only weakly and the occupa
rate of the optical lattice is low, as is typically true in expe
ments with only about 10% of the sites occupied. For hig
occupation rates or for strongly scattering atoms, multi
scattering of light can materially alter the character of t
scattered light, as we show in paper II@10#.

In problems involving randomly positioned but isotrop
scatterers, since a scalar approximation to the electrom
netic field and the equations it obeys is generally accur
the scattering problem is rarely considered beyond the sc
approximation@11–14#. We make the same approximation
our treatment of light scattering from an optical lattice
atoms. It is worth noting, however, that in certain situatio
of physical interest, it is no longer accurate to neglect
vector character of the radiation field. For example, when
medium is magnetoactive, then the presence of a magn
field can excite the photonic Hall effect. This effect, theore
cally predicted in Ref.@15# and experimentally demonstrate
in Ref. @16#, requires a full vector-field treatment. In th
context of weak localization too, the application of a ma
netic field breaks the time-reversal symmetry and causes
backscattering enhancement ratio, defined as the ratio o
enhanced scattering peak to its pedestal, to drop@17,18#.
©2003 The American Physical Society14-1
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Our paper is organized as follows. In Sec. II, we form
late the problem and calculate the electric field at a poin
observation in the far zone. The calculation of bilinear fie
averages taken over the statistical fluctuations of both
quantum motion and the randomness of the site occupatio
presented in Sec. III. The total number of trapped atoms
other important parameters for an optical lattice can be
lated to the properties of the scattered light, as we show
Sec. IV. The angular coherence of the scattered light will a
be discussed in that section. Then in Sec. V, we presen
explanation of the phenomenon of linewidth narrowing.
few concluding remarks appear in Sec. VI.

II. THEORETICAL FORMULATION

In this paper, we study the scattering of a weak pro
beam by an optical lattice of atoms in the first-order Bo
approximation. We treat the incident wave classically but
scattered field and the atoms quantum mechanically. We
the trapped atoms to be at a low enough temperature
they may be regarded as being essentially in the ground
of their trapping potential. Each atom performs a quantu
mechanical motion within its confining potential well. Th
motion of the center of mass of the atoms must therefore
properly treated. The quantized motion of atoms in both
two-dimensional@19,20# and three-dimensional@20# optical
potential wells has been observed. The spectral sideb
arise just from this quantum motion. Since our analysis
gards the field as an operator, it correctly describes impor
phenomena such as spontaneous decay.

Throughout the paper, we will assume for the sake
simplicity that the atoms are trapped in a simple cubic latti
A detailed discussion of the crystallography of optical l
tices can be found in Ref.@21#. In our calculations, we as
sume that the atoms have been trapped by some mecha
that need not be specified in advance. Since the moveme
each atom is typically confined to a small region cente
about the equilibrium point of its potential well, it is valid t
approximate the potential well parabolically@22#. We make
another useful simplification, one that is generally adequ
for the resonant scattering treated here, that each atom
only two electronic energy states, namely, an excited s
uE& and a ground stateuG&. This is a good approximation
even when the atom has a degenerate ground state, i.e.,
the magnetic quantum number for the ground state is n
zero. In that case, although each sublevel of the ground s
will see a different confining potential, the transition ra
from one such potential to another is rather low due to
Lamb-Dicke constraint@23#, and one can assume that on
one potential is present.

We treat our probe beamEinc as a plane wave with a un
amplitude, wave vectork0, and polarization vectorê0

Einc5 ê0eik0•r2 ivt. ~1!

Then, the Hamiltonian of the system, composed of the
om’s internal energy, its external mechanical energy, and
teraction with the probe field, takes the following form@24#
in the weak field limit:
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H5\v0b†b1
P2

2m
1

x

2
R22d•@Einc

(1)~R,t !b†1Einc
(2)~R,t !b#,

~2!

wherev0 is the atomic frequency,m is the mass of the atom
P and R are the momentum and position vector operato
respectively, andd is the dipole-moment vector matrix ele
ment for each atom. We treat each atom as an induced e
tric dipole with a physical extension that is much smal
than the wavelength of light. The variablesEinc

(1) andEinc
(2) are

the positive and negative frequency components of the i
dent field, respectively. The operatorsb†5uE&^Gu and b
5uG&^Eu are the electronic raising and lowering operator

By substituting the Hamiltonian into the Heisenberg equ
tion of motion, we get a differential equation describing t
time evolution of the lowering operator for thej th atom,

ḃ j5~2 iv02g!bj2
d•Einc, j

(1)

i\
, ~3!

whereg, a damping constant, has been added phenom
logically to account for atomic spontaneous decay that ar
from the interaction of the atom with its own field. A fluctu
ating vacuum-field contribution that enforces unitarity of i
teraction has been dropped from Eq.~3!, as it contributes
nothing to normally ordered operator expectation valu
Also in Eq. ~3!, the incident field, withEinc, j

(1) as its positive
frequency component at the position of thej th atom, is as-
sumed to be weak enough that the atom remains in its gro
state with nearly unit probability.

If the intensity of the incident wave is low enough that t
motion of the atoms is not perturbed much, then in the zer
order approximation, we can assume that each atom mo
harmonically with oscillation frequencyv̄, as it would in the
absence of any incident wave,

r j~ t !5r0 cosv̄t1
p0

mv̄
sinv̄t. ~4!

Here,r0 represents the initial displacement andp0 the initial
momentum of the atomj around the equilibrium point,Rj ,
of its trapping potential. By evaluating the incident field~1!
at the instantaneous location of the moving atom, substi
ing in Eq. ~3!, and noting thatg@v̄, as is typically the case
in experiments@25#, we have the following approximate
steady state solution forbj :

bj~ t !.2
d• ê0

i\
eik0•Rj 2 ivt

1

g1 i ~v02v!

3ei (k0•r0)cosv̄t1 i (k0•p0/mv̄) sin v̄t. ~5!

Since the harmonic motion of the atom in its potential w
leads to sidebands centered at frequencies that differ f
the driving frequency by multiples ofv̄, the complex
Lorentzian factor in Eq.~5! containing only a single driving
frequencyv is approximate. More correctly, each sideba
contribution in this equation, which can be made explicit
4-2
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expanding the second exponential in powers of exp(iv̄t),
must have its own Lorentzian factor, withv replaced by its
center frequency. Such a correction, however, is likely to
negligible wheng@v̄ and when only the first few sideband
that are well within the atomic linewidth are significant
excited. We will assume throughout our work that these c
ditions are met.

When the atoms are excited by the incident light, th
radiate as point dipoles, and the scattered fieldEs(r ,t) may
be expressed as a superposition of such dipolar contributi
In calculating a quantum-mechanical expression for
mean scattered light intensity, we need the positive and n
tive frequency componentsEs

(6)(r ,t), of the scattered field
operator. The Heisenberg equation of motion thatEs

(1)(r ,t)
obeys is the following:

“3@“3Es
(1)~r ,t !#1

1

c2

]2Es
(1)~r ,t !

]t2

.2
4p

c2
d(

i
b i b̈i~ t !d„r2Ri2r i~ t !…

.
4pv2

c2
d(

i
b ibi~ t !d„r2Ri2r i~ t !…, ~6!

where the summation has to be performed over all lat
sites and a binary numberb i has been introduced to speci
whether thei th site is occupied (b i51) or unoccupied (b i
50). In deriving Eq.~6!, we have used the fact that sinc
v@v̄, the time oscillations of the electronic displacement
each atom are approximately those imposed by the exte
field in the absence of any atomic motion, sob̈i(t).
2v2bi(t).

When transformed to the frequency domain, Eq.~6! be-
comes

“3@“3Ẽs
(1)~r ,ṽ !#2S ṽ

c
D 2

Ẽs
(1)~r ,ṽ !

5
4pv2

c2A2p
d(

i
b iE bi~ t !d„r2Ri2r i~ t !…ei ṽtdt, ~7!

where the one-dimensional Fourier transform has been
fined as

f̃ ~k!5
1

A2p
E f ~x!eikxdx. ~8!

We can solve forẼs
(1)(r ,ṽ) by using the dyadic Green’

function @27# for the vector Helmholtz operator on the lef
hand side of Eq.~7!,
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G~r ,r 8,ṽ !5S I1
1

kṽ
2 ““ D eikṽur2r8u

4pur2r 8u

5
1

kṽ
2 @~323ik ṽur2r 8u2kṽ

2 ur2r 8u2!r̂r̂

2~12 ik ṽur2r 8u2kṽ
2 ur2r 8u2!I #

eikṽur2r8u

4pur2r 8u3
,

~9!

wherer̂5(r2r 8)/ur2r 8u, kṽ5ṽ/c, andI is the unit dyadic.
When the observation pointr is far from the source pointr 8,
as always valid for a scattering problem, we may make
far-field approximation toG,

G~r ,r 8,ṽ !.~ I2 r̂ r̂ !
1

4pr
eikṽ(r 2 r̂•r8). ~10!

Use of the dyadic Green’s function~10! enables us to solve
Eq. ~7! for the scattered field

Ẽs
(1)~r ,ṽ !5

4pv2

c2A2p
(

i
E d•G~r ,r1 ,ṽ !dr1

3E b ibi~ t !d„r12Ri2r i~ t !…ei ṽtdt

5
v2

c2A2p
~ I2 r̂ r̂ !•d

eikṽr

r (
i

b i

3E bi~ t !ei ṽt2 ikṽ r̂•[Ri1r i (t)]dt. ~11!

Substituting expression~5! for bi into Eq. ~11! yields the
following scattered field in the first Born approximation:

Ẽs
(1)~r ,ṽ !52

v2

c2

1

A2p

d• ê0

i\

1

g1 i ~v02v!

3~ I2 r̂ r̂ !•d
1

r
eikṽr(

i
b ie

i (k02kṽ r̂ )•Ri

3E ei (ṽ2v)t1 i (k02kṽ r̂ )•r i (t)dt. ~12!

The preceding equation may be expressed in terms of
lowering and raising operators,ai(t) andai

†(t), for the pro-
jection of the harmonic displacement vector~4! along the
scattering vector

k1~ṽ !5k02kṽ r̂ , ~13!

by writing

i ~k02kṽ r̂ !•r i~ t !5 ik1~ṽ !•r i~ t !5u1~ t !ai
†2u1* ~ t !ai ,

~14!
4-3
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whereu1(t)5 ik1A(\/2mv̄)ei v̄t. Upon substituting Eq.~14!
into Eq. ~12!, we obtain the following expression for th
scattered field operator:

Ẽs
(1)~r ,ṽ !52

d• ê0

i\

v2

c2

1

A2p

1

g1 i ~v02v!

3~ I2 r̂ r̂ !•d
1

r
eikṽr(

i
b ie

ik1•Ri

3E dteai
†u1(t)2aiu1* (t)ei (ṽ2v)t. ~15!

Equation~15! will serve as the starting point for our calcu
lation of bilinear scattered field averages.

III. CALCULATION OF BILINEAR FIELD AVERAGES

Under narrowband detection@28# the observed scattere
light intensity is proportional to the quantum expectati
value,^Ẽs

(2)(r ,ṽ)•Ẽs
(1)(r ,ṽ)& in the initial state of the har-

monic motion of the centers of mass of the trapped ato
Let us assume initial state for each atom to be its gro
state. Then, we may write with the help of Eq.~15!

^Ẽs
(2)~r ,ṽ !•Ẽs

(1)~r ,ṽ !&

5S d• ê0

\
D 2S v

c D 4 1

2p

1

g21~v02v!2

1

r 2
u~ I2 r̂ r̂ !•du2

3(
i , j

b ib je
2 ik1•Ri1 ik1•RjE dtdt8e2 i (ṽ2v)t1 i (ṽ2v)t8

3^e2u1(t)ai
†
1u1* (t)aieaj

†u1(t8)2aju1* (t8)&

[B~v!F(
i

b iE dtdt8e2 i (ṽ2v)t1 i (ṽ2v)t8

3e2(k1
2\/2mv̄)1(k1

2\/2mv̄)e2 i v̄(t2t8)

1(
iÞ j

b ib je
2 ik1•(Ri2Rj )E dtdt8e2 i (ṽ2v)t1 i (ṽ2v)t8

3e2k1
2\/2mv̄G , ~16!

where we have absorbed all coefficients in front of the fi
summation sign intoB(v). We have also used the fact th
b i

25b i , sinceb i50 or 1, in the first sum. Next we expan

exp@(k1
2\/2mv̄)e2 i v̄(t2t8)# into a power series, and introduc

two new parameters

T15
1

2
~ t1t8!, ~17!

T25t2t8, ~18!

which permits us to rewrite Eq.~16! as
05661
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^Ẽs
(2)~r ,ṽ !•Ẽs

(1)~r ,ṽ !&

5e2(k1
2\/2mv̄)F(

i
b iE dT1dT2e2 i (ṽ2v)T2

3 (
n51

`
1

n! S k1
2\

2mv̄
D n

e2 inv̄T21(
iÞ j

b ib je
2 ik1•(Ri2Rj )

3E dT1dT2e2 i (ṽ2v)T2G
5e2(k1

2\/2mv̄)2p

3F(
i

b i (
n50

`
1

n! S k1
2\

2mv̄
D n

d~ṽ2v1nv̄ !

1(
iÞ j

b1b je
2 ik1•(Ri2Rj )d~ṽ2v!G , ~19!

where we have, for brevity, droppedB(v) as well as an
overall factor equal to the total observation time. The co
ficient exp(2k1

2\/2mv̄) is the Debye-Waller factor that origi
nates from the relative motion of the scatterers around
lattice sites@29#.

Let there be altogetherN atoms trapped inN0 lattice sites.
Usually N/N0 is small, around 10%@30#. Then Eq. ~19!
takes the form

^Ẽs
(2)~r ,ṽ !•Ẽs

(1)~r ,ṽ !&

}e2(k1
2\/2mv̄)FN(

n50

`
1

n! S k1
2\

2mv̄
D n

d~ṽ2v1nv̄ !

1(
iÞ j

b ib je
2 ik1•(Ri2Rj )d~ṽ2v!G , ~20!

whered(ṽ2v1nv̄) represents line emission at a sideba
of frequency (v2nv̄). The origin of sideband emission ca
be traced back to Raman scattering, as shown in Fig. 1.
absorbing a photon of frequencyv, an atom gets electroni
cally excited from the ground stateuG& ^ u0& to a higher
energy leveluE& ^ um&, then jumps back to a vibrationally

FIG. 1. The sideband generation, where the lower, upper,
dotted horizontal lines represent the statesuG& ^ u0&, uG& ^ un&, and
uE& ^ um&, respectively.
4-4
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excited stateuG& ^ un& in the electronic ground state, givin
up a photon with frequency (v2nv̄), n.0. Here,u0& rep-
resents the ground state of harmonic oscillation of the a
and un& an excited state. In experiments anti-Stokes si
bands at frequencies (v1nv̄) are also found@32#, because
in reality not all atoms are in the ground state of harmo
oscillation.

Equation~20! reveals two distinct kinds of scattering. Th
first is elastic scattering, represented by then50 term of the
first sum and by the entire second sum. The second
gives the usual Bragg scattering, which is weak for sm
occupation fractions. The second kind of scattering is ine
tic scattering, represented by thenÞ0 terms in the first sum
When an atom is raised from the ground state to an exc
state by the absorption of a photon from the incoming wa
it can return to its original state by emitting a coherent ph
ton of the same frequency as the incident wave. Alter
tively, the excited atom can relax back to an excited state
harmonic motion in the electronic ground state, in whi
case the scattered photon has not only a different freque
but also has no definite phase relation with the incid
wave. This is why radiation scattered at the central freque
is enhanced by a coherent interference of contributions f
different atoms, while there is no such interference at any
the sidebands, as clearly seen in Eq.~20!.

Equation~20! represents the expectation value of the lig
intensity at frequencyṽ from a given realization of the site
occupation. We must average Eq.~20! overb ib j to arrive at
the average intensity that one would observe in any prac
experiment. It is readily found that foriÞ j

^b ib j&5^b i&^b j&5~N/N0!2[b0
2 ,

assuming that each site is equally likely to be occupied.
ing a single pair of triangular brackets to denote both
quantum-mechanical expectation value and an average
the fluctuations of the site occupation, we find the followi
mean scattered light intensity:

^Ẽs
(2)~r ,ṽ !•Ẽs

(1)~r ,ṽ !&}e2k1
2\/2mv̄FN(

n50

`
1

n! S k1
2\

2mv̄
D n

3d~ṽ2v1nv̄ !1(
iÞ j

~N/N0!2

3e2 ik1•(Ri2Rj )d~ṽ2v!G . ~21!

Note that in a statistical sense, we have a uniform lattice
an average, one that should produce Bragg scattering.
second sum in the above square brackets is just the m
ematical expression for that scattering.

The nth sideband contribution to the mean scattered
tensity is weighted by a factor of (\k1

2/2mv̄)n in Eq. ~21!.
This means the part of the energy radiated in the sideban
significantly controlled by the potential well. The stiffer th
potential, i.e., the largerv̄, the fewer the sidebands that a
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significantly excited@33#. Since\k1
2/2mv̄ is proportional to

the squared ratio of the oscillation amplitude of the atoms
the optical wavelength, the number of scattered sideba
that are observed is a strong indicator of how well the ato
are localized, on the scale of an optical wavelength, in
optical potential wells. The more tightly the atoms are co
fined, the smaller that number@22#. This is often referred to
as the Dicke effect@34,35#.

IV. NUMBER OF TRAPPED ATOMS AND ANGULAR
COHERENCE OF SCATTERED LIGHT

Several important conclusions can be drawn from the
sults of the preceding section. First of all, the difference
tween two successive sideband frequencies tells us the s
ture of the optical potential at each lattice site throughv̄
5Ax/m. Second, from the Bragg scattering term in Eq.~21!,
the lattice constant can be measured by recording the ang
variation of the intensity at the central frequency. The fi
term of Eq.~21! provides a uniform background in the an
gular pattern of the scattered light intensity, and can be ea
subtracted out. We now consider two other useful results
require a somewhat more detailed discussion.

A. Number of trapped atoms

The number of trapped atoms can be inferred experim
tally by using the Bragg diffraction technique@36#. Here, we
present another simple way to obtain this information. In
exact forward scattering direction of the incident wave,
measure the intensity of the scattered light at the central
quencyI elas and the intensity at the first sidebandI inela . For
the central frequencyṽ5v, k150 for forward scattering,
and so from Eq.~21!,

I elas}N2.

For the first sideband, on the other hand,k15ṽ/c for for-
ward scattering, and so again from Eq.~21!,

I inela}N
v̄\

2mc2
e2v̄\/2mc2

.

By taking the ratio of the two, we have

N5
I elas

I inela

v̄\

2mc2
e2v̄\/2mc2

,

where v@v̄ and N@1 are assumed. Thus, by measuri
I elas, I inela , andv̄, one can deduce the number of trapp
atoms.

B. Angular coherence of scattered light

We may calculate the degree of angular coherence of
scattered light by considering the field correlation along t
observation directions, specified by unit vectorsr̂ and r̂ 8. By
taking the scalar product ofẼs

(1)( r̂ ,ṽ) given by Eq.~15!
4-5
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with its Hermitian adjoint evaluated along ther̂ 8 direction,
and then taking the expectation value of the resulting bilin
operator product in the initial ground state of the center-
mass motion of atoms, we obtain

^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&

;(
i , j

b ib je
2 ik1•Ri1 ik18•RjE E dtdt8e2 i (ṽ2v)t1 i (ṽ2v)t8

3^e2u1(t)ai
†
1u1* (t)aieaj

†u18(t8)2aju18* (t8)&, ~22!

where we have suppressed for brevity an overall coeffic
on the right-hand side. The preceding average has two
tributions. One is from the fields that originate from the sa
atoms, corresponding to thei 5 j terms. The other is from the
interference of the fields radiated by different atoms, cor
sponding to theiÞ j terms. By recognizing that the operat
whose expectation value is needed in Eq.~22! may be ex-
pressed in terms of the coherent state displacement ope
D(a) @37#, we can evaluate that expectation value rat
simply. For i 5 j , one has

^e2u1(t)ai
†
1u1* (t)aieaj

†u18(t8)2aju18* (t8)&

[^Di@2u1~ t !#Di@u18~ t8!#&

5e[(k1k18\/2mv̄)ei v̄(t82t)2\(k1
2
1k18

2)/4mv̄] , ~23!

while, wheniÞ j

^e2u1(t)ai
†
1u1* (t)aieaj

†u18(t8)2aju18* (t8)&

5^e2u1(t)ai
†
1u1* (t)ai&^eaj

†u18(t8)2aju18* (t8)&

5e2\(k1
2
1k18

2)/4mv̄. ~24!

With these results, expression~22! takes the form

^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&

;F(
i

b ie
i (k182k1)•RiE dtdt8ei (ṽ2v)(t82t)

3e2\(k1
2
1k18

2)/4mv̄1(k1k18\/2mv̄)ei v̄(t82t)

1(
iÞ j

b ib je
2 ik1•Ri1 ik j8•RjE dtdt8ei (ṽ2v)(t82t)

3e2\(k1
2
1k18

2)/4mv̄G . ~25!

We now expand exp@(k1k18\/2mv̄)ei ṽ(t82t)#, as before,
into a power series, and introduce the sum and differe
timesT15(t1t8)/2 andT25(t2t8). An integration overT2
then reveals the presence of sidebands in the correla
function ~25!,
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^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&

;e2(\/4mv̄)(k1
2
1k18

2)F(
i

b ie
i (k182k1)•Ri(

n

1

n!

3S k1k18
\

2mv̄
D n

d~ṽ2v1nv̄ !

1(
iÞ j

b ib je
2 ik1•Ri1 ik j8•Rjd~ṽ2v!G . ~26!

When averaged over the occupation of lattice sites, the m
correlation function~26! becomes

^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&

;e2(\/4mv̄)(k1
2
1k18

2)Fb0(
n

1

n!
~k1k18\/2mv̄ !n

3d~ṽ2v1nv̄ !(
i

ei (k182k1)•Ri

1b0
2(

iÞ j
e2 ik1•Ri1 ik18•Rjd~ṽ2v!G . ~27!

By adding to and subtracting from the double sum in E
~27! terms withi 5 j , we may reexpress it in terms of unre
stricted sums over all lattice sites as

^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&

;e2(\/4mv̄)(k1
2
1k18

2)Fb0(
n

1

n!
~k1k18\/2mv̄ !n

3d~ṽ2v1nv̄ !(
i

ei (k182k1)•Ri1b0
2S (

i
e2 ik1•Ri D

3S (
j

eik18•Rj D d~v2ṽ !2b0
2(

i
ei (k182k1)•Ri

3d~ṽ2v!G . ~28!

These lattice sums are simple geometric-series sums an
thus easily evaluated. If we choose the origin of the coor
nate system to be at the center of the lattice, and there
Nx11, Ny11, andNz11 sites along the three sides@38#,
then we have

(
i

eik•Ri5Q~k!, ~29!

where Q(k) is the three-dimensional grating function d
fined as
4-6
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Q~k!5
sin@kxa~Nx11!/2#

sin~kxa/2!

sin@kya~Ny11!/2#

sin~kya/2!

3
sin@kza~Nz11!/2#

sin~kza/2!
.

Using this sum formula, we may write down for the co
relation function

^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&

;e2(\/4mv̄)(k1
2
1k18

2)H b0(
n

1

n! S k1k18
\

2mv̄
D n

3d~ṽ2v1nv̄ !Q~k182k1!1b0
2d~ṽ2v!

3@Q~k18!Q~2k1!2Q~k182k1!#J . ~30!

Expressions for the mean intensities along the two ob
vation directions now follow from this result when the tw
directionsr̂ and r̂ 8 are set equal in Eq.~30!. The mean in-
tensity alongr̂ takes the form
p

ul

n

t

05661
r-

^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ ,ṽ !&

;e2(\/2mv̄)k1
2Fb0(

n

1

n!
~k1

2\/2mv̄ !nd~ṽ2v1nv̄ !N0

1b0
2Q2~k1!d~ṽ2v!2b0

2d~ṽ2v!N0G , ~31!

where we have used the result thatQ(0)5(Nx11)(Ny
11)(Nz11)5N0, the total number of lattice sites. Th
mean intensity alongr̂ 8 is obtained by replacingr̂ in Eq. ~31!

by r̂ 8.
With the help of these expressions, we may write down

explicit result for the degree of angular coherencegcoh de-
fined as the ratio

gcoh~ r̂ , r̂ 8!

5
u^Ẽs

(2)~ r̂ ,ṽ !•Ẽs
(1)~ r̂ 8,ṽ !&u

A^Ẽs
(2)~ r̂ ,ṽ !•Ẽs

(1)~ r̂ ,ṽ !&^Ẽs
(2)~ r̂ 8,ṽ !•Ẽs

(1)~ r̂ 8,ṽ !&
.

~32!

If one only looks at the central frequency, i.e., the incide
frequencyv, then the explicit formula forgcoh assumes the
form
gcoh~v!5U@~ I2 r̂ r̂ !•d#•@~ I2 r̂ 8 r̂ 8!•d#

u~ I2 r̂ r̂ !•duu~ I2 r̂ 8 r̂ 8!•du

~12b0!Q~k182k1!1b0Q~k18!Q~2k1!

A~12b0!N01b0Q2~k1!A~12b0!N01b0Q2~k18!
U . ~33!
-
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The degree of angular coherence takes a somewhat sim
form for the first sideband frequencyv2v̄,

gcoh~v2v̄ !5U@~ I2 r̂ r̂ !•d#•@~ I2 r̂ 8 r̂ 8!•d#Q~k182k1!

u~ I2 r̂ r̂ !•duu~ I2 r̂ 8 r̂ 8!•duN0
U .
~34!

The angular coherence function exhibits a dependence on
number of lattice sitesNx ,Ny ,Nz even in the limit that they
go to`, but that dependence is principally through the m
tiple occurrences of the grating functionQ in Eqs.~33! and
~34!. According to its definition, the grating function~29! is
a product of three one-dimensional grating functions depe
ing separately onNx ,kx , Ny ,ky , and Nz ,kz . The first of
such functions,

sin@kxa~Nx11!/2#

sin~kxa/2!
,

has principal maxima atkxa52pp and secondary maxima a
kxa(Nx11)52qp, wherep is any integer, whileq is any
integer not equal to a multiple of (Nx11). Both kinds of
maxima have an angular width of the order ofl/(Nxa) that
becomes infinitely small in the limitNx→`. The other two
ler

the

-

d-

functions of whichQ is composed exhibit similar depen
dences. In spite of these vanishing angular widths, howe
the grating function itself does not vanish in the lim
Nx ,Ny ,Nz→`. The locations of the principal maxima of th
grating functionQ(k182k1) correspond to the Bragg scatte
ing condition, for which both the denominator and the n
merator in Eqs.~33! and ~34! approach infinity at the sam
rate, leading to a finitegcoh .

We shall now display some of our results in graphic
form. We choose the incident wave vector and the first sc

tering direction to be along thez axis: k05k0ẑ, r̂5 ẑ. The
second scattering direction is then selected to lie in thexz

plane at angleu with the first,r̂ 85sinux̂1cosuẑ. Therefore,
from Eq. ~13!, k150, k185k0(2sinu,0,12cosu). Since the
orientation of the dipole moment matrix elementd of each
scatterer is, in general, not fixed, in any experiment invo
ing many scatterers, we must regardd as randomly oriented
in a statistically isotropic manner in space and thus aver
all expectation values of interest over all possible orien
tions of d. We do this averaging numerically.

We see in Fig. 2, wherea/l51.7, it is only in the forward
direction (u50) that there is perfect coherence, but there
secondary peaks distributed betweenu50 and u5p. The
4-7
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forward peak rather trivially meets the Bragg scattering c
dition k02ks5G, whereG is a reciprocal lattice vector. Th
secondary peaks result, by contrast, from only an imper
satisfaction of that condition in thex-z plane, which implies
a correspondingly imperfect coherence between the forw
and obliquely scattered beams. In Fig. 3, wherea/l51, per-
fect coherence is obtained in both the forward and backw
directions. The backward coherence always exists when
a/l is an integral number, under this condition the backw
scattered waves are entirely in phase with the forward wa
The Bragg condition is satisfied for one more direction in
x-z plane, that is along thex̂ axis (u5p/2). This shows up
as a secondary peak atu5p/2. The fact thatugcohu is strictly
less than 1 has to do with the scattering-angle depen
angular averaging of the dipole-moment orientations in
~33!, even though the purely phase dependent factor, wh
depends on theQ ’s in that equation, is exactly 1 for this cas
as foru50 andp.

We plot the degree of angular coherence at the first s
band, gcoh(v2v̄), in Figs. 4 and 5. Unlike the case o
gcoh(v), there are no atom-atom interference terms

FIG. 2. Degree of angular coherence at the central freque
with a/l51.70 and 101 sites on each side of the lattice.

FIG. 3. Degree of angular coherence at the central freque
with a/l51.0 and 101 sites on each side of the lattice.
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gcoh(v2v̄). Since v̄/c is a very small number, howeve
the incident and scattered waves have practically the s
frequency.

One significant difference between the coherence patt
at v andv2v̄, apart from the obvious Bragg enhanceme
for the former, is that in the forward scattering the degree
angular coherence atv2v̄ decays rapidly with the angle
between the observation directions. This behavior ofgcoh
can be understood based on the Van Cittert-Zernike theo
@39#, according to which light emitted by a collection o
spatially distributed incoherent radiators, such as those
have here at all of the sidebandsv2nv̄,nÞ0, will acquire
partial spatial coherence on propagation in a manner
scribed by a Fourier transform relation. The angular width
this coherence around the forward direction is of the orde
l/Nxa, which is about 0.01 rad in Fig. 4 and 0.006 rad
Fig. 5. Since the total field radiated by a discrete but perio
array of atoms, even when emitting with random phases
coherent along any two directions that obey the Bragg c
dition, a similar structure is obtained around each Bragg
rection. This may be seen as the additional structure in

cy

cy

FIG. 4. Degree of angular coherence at the first sideband w
a/l51.0 and 101 sites on each side of the lattice.

FIG. 5. Degree of angular coherence at the first sideband w
a/l51.70 and 101 sites on each side of the lattice.
4-8
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angular coherence function aroundDu5p/2 and p in
Fig. 4.

V. NARROWING OF SIDEBAND SPECTRAL LINES

It was found in Ref.@33# that the spectral widths of th
sidebands are actually narrower than that expected, base
a free-atom theory. This line narrowing can be traced to
Lamb-Dicke effect that relates to the spatial localization
the atoms in optical traps. The present section is devote
an analysis of this phenomenon.

As we saw in the preceding section, the power spectr

^Ẽs
(2)( r̂ ,ṽ)•Ẽs

(1)( r̂ ,ṽ)&, of scattered light has a Lorenzia
frequency dependence,

B~v!5
1

g21~v02v!2
,

which gives it a characteristic widthg. In our calculation, we
have assumed thatg is a constant, independent of the exte
nal state of the atom. Now we want to calculate this quan
more carefully to see if that is indeed so.

As before, we assume the atom has only two electro
states, the ground stateuG& and the excited stateuE&, and
lives in a three-dimensional potential well described ac
rately in the parabolic approximation. The Hamiltonian f
the atom interacting with the electromagnetic field has
form

H5\v0uE&^Eu1P2/~2m!1xR2/21VI1(
kv

\vkv
akv

† akv
,

~35!

where the operators$akv

† % and $akv
% are the photon creation

and annihilation operators. The interaction between the a
and the vacuum fieldEvac , described by the termVI , causes
a spontaneous relaxation of the atom from an excited sta
a lower state by the emission of a photon.

Let us assume that initially the atom is in the intern
excited stateuE& and in the external motional stateu l &, while
the field is in the vacuum stateu0&. Because of its interaction
with the electromagnetic field, the atom tends to relax i
the internal ground stateuG& and possibly another externa
stateun&, emitting a photon of wave vectorkv and polariza-
tion e in the stateukve&. We find it convenient to use th
Weisskopf-Wigner method@40# to construct an intermediat
stateuc(t)& as the following superposition of the initial sta
and all possible final states:

uc~ t !&5b1~ t !uE,l ,0&e2 i (E1t/\)

1(
Kve

b2
kve

~ t !uG,n,kve&e2 i (E2t/\), ~36!

with the caveatsb1(t)5e2gt andb2
kve(0)50. The parameter

g is the decay constant, andE15E1( l 11/2)\v̄ and E2

5G1(n11/2)\v̄1\vkv
are the energy eigenvalues of th

two statesuE,l ,0& and uG,n,kve&. By substituting Eq.~36!
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into the Schro¨dinger equation generated by the Hamiltoni
~35! and then performing appropriate scalar products, we
tain the following differential equations forb1(t) and
b2

kve(t):

i\ḃ1~ t !5(
kve

b2
kve

~ t !^E,N,0uVI uG,n,kve&eiv12t, ~37!

i\ḃ2
kve

~ t !5b1~ t !^G,n,kveuVI uE,N,0&e2 iv12t, ~38!

wherev125v01( l 2n)v̄2vkv
.

Equation~38! may be integrated in time when the form
b1(t)5e2gt is substituted into it and the initial condition
b2

kve(0)50 is used, with the result

b2
kve

~ t !5
i

\
^G,n,kveuVI uE,l ,0&

211e2 iv12t2gt

g1 iv12
. ~39!

We can now calculateg by substituting this expression fo
b2

kve into Eq. ~37!,

2 i\g5(
kve

i

\
u^G,n,kveuVI uE,l ,0&u2

12eiv12t1gt

g1 iv12
.

~40!

Using the approximation of Ref.@41# to replace (1
2eiv12t1gt)/(g1 iv12) by the sum of ad function and a
Cauchy principal value form, we can thus calculateg. Its
real part gives the transition rate from an excited state t
lower state, and its imaginary part the radiative level sh
Both the radiative decay and level shift are characteristic o
discrete state coupled to a continuum. Since the transi
rate is all we care for, however, we need to retain only
real part ofg @42#. By replacing the sum overkv by an
integral, valid in the limit of infinite quantization volumeL3

@37#, we obtain the result

g.
p

\2E dkv(
e

S L

2p D 3

u^G,n,kveuVI uE,l ,0&u2

3d„vkv
2v02~ l 2n!v̄…. ~41!

The matrix element ofVI present in Eq.~41! reduces in
the rotating-wave approximation to the form

^G,n,kveuVI uE,l ,0&5^G,n,kveu2 idop•(
j

n jaj êeik j •r

1 idop
†
•(

j
n jaj

†êe2 ik j •ruE,l ,0&,

~42!

where (dop1dop
† ) is the atomic dipole operator,n j

5A2p\v j /L3, and j is an abbreviated notation to label
particular wave-vector-polarization mode of light. Onlyaj

†

contributes to the preceding matrix element. Assuming t
dop is alongẑ, we then have
4-9
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^G,n,kveuVI uE,l ,0&5 id~ ẑ• êkve!nkv
^nue2 ikv•ru l &. ~43!

Substituting Eq.~43! back into Eq.~41!, and splitting thekv
integration into its radial and angular parts, we obtain

g5
d2

\4p (
e
E dvkve

vkv

3

c3 E dV~ ẑ• êkve!
2u^nue2 ikv•ru l &u2

3d„vkv
2v02~ l 2n!v̄…, ~44!

where dV is the solid angle element associated with t
direction of kv . This is the general formula for the deca
rate.

Let us assume that initially the atom is in the grou
motional state, l 50, for which the matrix elemen
^nue2 ikv•ru0& can be evaluated by noting that

ikv•r5 iA \

2mv̄
~kvx!~ax1ax

†!1 iA \

2mv̄
~kvy!~ay1ay

†!

1 iA \

2mv̄
~kvz!~az1az

†!. ~45!

In other words,eikv•r is a three-dimensional displaceme
operator@37#, which produces a three-dimensional coher
state when operated on the motional ground state. This
servation enables us to write down

^nue2 ikv•ru0&5e2\kv
2/4mv̄

1

Anx!ny!nz!
S 2 ikvxA \

2mv̄
D nx

3S 2 ikvyA \

2mv̄
D nyS 2 ikvzA \

2mv̄
D nz

.

~46!

With this result, we can go on to expressg as

g5
d2

\4p (
e
E k3dVe2\k2/2mv̄

1

nx!ny!nz!

3~kx!
2nx~ky!2ny~kz!

2nz~\/2mv̄ !nx1ny1nz~ ẑ• êkve!
2,

~47!

where we have setk5kv5(v02nv̄)/c. Introducingu and
f, the polar and azimuthal angles ofk relative toẑ, we can
perform the sum(e( ẑ• êkve)

2 @28# and show it to equal sin2u.
This result when substituted into Eq.~47! leads to a simple
angular integral that can be evaluated in closed form,

g5g0

3

8p
e2~\k2/2mv̄ !

1

nx!ny!nz!
~\k2/2mv̄ !nx1ny1nzI uI f ,

~48!
05661
t
b-

whereg05(2d2k3/3\) is the Wigner-Weisskopf natural de
cay rate for an isolated atom at rest andI u ,I f involve certain
G functions

I u5
G~nz11/2!G~nx1ny12!

G~nx1ny1nz15/2!
, ~49!

I f52
G~ny11/2!G~nx11/2!

G~nx1ny11!
. ~50!

In an isotropic harmonic potential well, all excited stat
with the same value for the sum of (nx1ny1nz! are degen-
erate. Therefore, the transition rate corresponding to a r
ated photon with a wave numberk5(v2nv̄)/c is the sum
of transition rates into individual components in the subse
nx ,ny ,nz values that add up ton:

G trans
n 5g0

3

8p
e2~\k2/2mv̄ ! (

nx1ny1nz5n

3F 1

nx!ny!nz!
S k2\

2mv̄
D nx1ny1nz

I uI fG . ~51!

For a typical experimental situation,G trans
n ,g0, i.e., the

widths of the sidebands are narrower than expected, a
verified by experiments@33#. From Eq.~51!, we can see tha
the Lamb-Dicke effect is the principal contribution to th
narrowing. Although the degeneracy of the external atom
states tends to oppose the line narrowing, it is overwhelm
by the Lamb-Dicke contribution. The physical origin of th
narrowing is the small overlap between an excited state
the ground state of harmonic motion.

When the optical potential well is so stiff thatv̄→`, then
only nx5ny5nz50 will contribute to the sum in Eq.~51!.
We then have

G trans
n 5g0 . ~52!

Physically speaking, in this case the atom is tightly trapp
in the ground state of the harmonic motion and theref
radiates like a stationary radiator.

VI. CONCLUSION

In this paper, we have discussed Born scattering from
optical lattice formed by trapped atoms, and found that
studying the scattered intensity, we can obtain important
formation about the lattice, such as the lattice constant,
stiffness of the individual optical traps, and the number
trapped atoms. We also studied the angular coherence o
scattered light both at the frequency of the incident light a
at its motional sidebands. Finally, we explained an obser
narrowing of the sideband spectral lines as an essential
sequence of the Lamb-Dicke effect.

Born scattering is a powerful tool to monitor the motio
of the trapped atoms. It does not, however, give us m
insight into how light propagates inside an optical lattic
One must take into account the higher orders of scatterin
the nature of light propagation inside a strongly scatter
medium is to be fully understood. We turn to this question
paper II @10#.
4-10
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T.W. Hänsch, Phys. Rev. Lett.75, 4583~1995!.

@32# M. Gatzke, G. Birkl, P.S. Jessen, A. Kastberg, S.L. Rolst
and W.D. Phillips, Phys. Rev. A55, R3987~1997!.

@33# C.I. Westbrook, C. Jurczak, G. Birkl, B. Desruelle, W.D. Ph
lips, and A. Aspect, J. Mod. Opt.44, 1837~1997!.

@34# R.H. Dicke, Phys. Rev.89, 473 ~1953!.
@35# The sideband generation has its origin in the periodic mot

of the radiator. It can also be discussed classically@34#.
@36# M. Weidemüller, A. Görlitz, T.W. Hänsch, and A. Hemmerich
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