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Light scattering from a randomly occupied optical lattice. I. Born approximation
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A theoretical study of the scattering of light from a randomly occupied optical lattice of resonant atoms is
presented to reveal both the characteristics of the lattice and the properties of light scattered from the lattice. In
the first-order Born approximation we discuss here, a number of interesting effects are established, including
sideband Stokes scattering, a finite angular coherence of the scattered light, and spectral line narrowing.
Specifically, the degree of angular coherence of the scattered light is calculated, and it is shown that such
coherence is strongly influenced by the regularity and size of the underlying lattice structure. The previously
observed phenomenon of the sideband spectral line narrowing is also explained in terms of the localization of
atoms in the trapping potential wells. Important information about the lattice can thus be recovered by ana-
lyzing the scattered light in the Born approximation.
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[. INTRODUCTION structure of the optical potential, the lattice constant, side-
bands, and the number of trapped atoms, can all be inferred
Studies of light scattering have a modern history of over &rom a study of the scattered light in the Born approximation.
hundred years since Rayleigh first successfully explained the When the atoms are trapped at the bottom of the trapping
blue sky and the associated light polarization puzzle. Theotential wells, a fully quantum-mechanical consideration re-
single-scattering approximation that Rayleigh invoked is stillveals the presence of sidebands observed in the spectrum of
popularly used because of its simplicity; it is not alwaysthe scattered light. However, since not all of the lattice sites
sufficient, however, particularly when the medium is stronglyare occupied and the knowledge of which sites are occupied
scattering. Examples of strong scattering include the propaly atoms and which sites are not can only be given in statis-
gation of radiation through the atmospheres of stars and thiical terms, the scattered light too has a statistical character.
scattering of sound in sea wafdr]. In spite of the randomness of such a lattice based medium, a
The subject of radiative transfer was initially of interest qualitative difference from a continuous random medium is
mainly to the astronomical community. Active research inthat the underlying optical lattice possesses regularity. Here,
this area by the physics community was largely stimulated irwe investigate how this regularity alters the character of light
the 1980s by the possibility of localizing light in a random, propagation in an otherwise random medium.
strongly scattering mediurf2]. Weak localization3-5], a In the present paper, we discuss the scattering of light
phenomenon in which multiple scattering of radiation from afrom an optical lattice in the first-order Born approximation,
random medium generates an enhanced peak in the bacdik-which the second and higher orders of light scattering are
scattering direction, was experimentally observed in 1985 byegarded as being negligible. This is an accurate approxima-
van Albada, Lagendijk, Wolf, and Maré¢#,5]. Weak local- tion when the atoms scatter only weakly and the occupation
ization results from the fact that the fields multiply scatteredrate of the optical lattice is low, as is typically true in experi-
by a given set of scatterers in one sequence and in the exattents with only about 10% of the sites occupied. For higher
path-reversed sequence are in perfect phase, and therefarecupation rates or for strongly scattering atoms, multiple
interfere constructively. Since these mutually reversed sescattering of light can materially alter the character of the
guences of scattering can also form closed loops within thaecattered light, as we show in papef10].
medium, the probability for the radiation to return to its start-  In problems involving randomly positioned but isotropic
ing point is greatly increased, and the diffusion constant iscatterers, since a scalar approximation to the electromag-
correspondingly reduced as discussed in Rgfs/]. Strong  netic field and the equations it obeys is generally accurate,
localization of light, characterized by a nearly complete lackthe scattering problem is rarely considered beyond the scalar
of transmission of light through a strongly scattering me-approximatiorf11—-14. We make the same approximation in
dium, has also been observed recently in semiconductasur treatment of light scattering from an optical lattice of
powders[8]. atoms. It is worth noting, however, that in certain situations
An optical lattice is a periodic arrangement of atoms con-of physical interest, it is no longer accurate to neglect the
fined in place by laser beams. It is an important system bevector character of the radiation field. For example, when the
cause it provides a unique environment for performing preimedium is magnetoactive, then the presence of a magnetic
cision spectroscopy, frequency standards, tests dield can excite the photonic Hall effect. This effect, theoreti-
fundamental physics, and mof@]. It is therefore desirable cally predicted in Ref[15] and experimentally demonstrated
to characterize, both theoretically and experimentally, the dyin Ref. [16], requires a full vector-field treatment. In the
namics of the trapped atoms inside the lattice. Light scattereontext of weak localization too, the application of a mag-
ing, the topic of primary interest in the present paper, fur-netic field breaks the time-reversal symmetry and causes the
nishes a convenient approach for this purpose. We will sebackscattering enhancement ratio, defined as the ratio of the
that the important characteristics of the lattice, such as thenhanced scattering peak to its pedestal, to {itdplg.
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Our paper is organized as follows. In Sec. Il, we formu- P2 x ) . -
late the problem and calculate the electric field at a point ofH =fwebb+ >m ToR —d-[EGRDDT+ES (R, )],
observation in the far zone. The calculation of bilinear field )

averages taken over the statistical fluctuations of both the

gquantum motion and the randomness of the site occupation igherew, is the atomic frequencynis the mass of the atom,
presented in Sec. lll. The total number of trapped atoms ang and R are the momentum and position vector operators,
other important parameters for an optical lattice can be rerespectively, andl is the dipole-moment vector matrix ele-
lated to the properties of the scattered light, as we show imnent for each atom. We treat each atom as an induced elec-
Sec. IV. The angular coherence of the scattered light will alsaric dipole with a physical extension that is much smaller
be discussed in that section. Then in Sec. V, we present afan the wavelength of light. The variabIEﬁﬁc’ andE‘7) are

. . . . Inc
explanation of the phenomenon of linewidth narrowing. Athe positive and negative frequency components of the inci-

few concluding remarks appear in Sec. VI. dent field, respectively. The operatobd=|E)(G| and b
=|G)(E| are the electronic raising and lowering operators.
II. THEORETICAL FORMULATION By substituting the Hamiltonian into the Heisenberg equa-

tion of motion, we get a differential equation describing the

In this paper, we study the scattering of a weak prob&jme evolution of the lowering operator for ttjéh atom,

beam by an optical lattice of atoms in the first-order Born
approximation. We treat the incident wave classically but the ) _ d- Ei(n+c)j
scattered field and the atoms quantum mechanically. We take bj=(—iwo=y)bj————, 3

the trapped atoms to be at a low enough temperature that

they may be regarded as being essentially in the ground stafghere y, a damping constant, has been added phenomeno-
of their trapping potential. Each atom performs a quantumyggically to account for atomic spontaneous decay that arises
mechanical motion within its confining potential well. The fom the interaction of the atom with its own field. A fluctu-
motion of the center of mass of the atoms must therefore bgting vacuum-field contribution that enforces unitarity of in-
properly treated. The quantized motion of atoms in both th§e action has been dropped from E®), as it contributes

two-dimensiona[19,2Q and three-dimension&R0] optical  nothing to normally ordered operator expectation values.
potential wells has been observed. The spectral sidebanggs, in Eqg. (3), the incident field, withE(H)  as its positive

arise just from this quantum motion. Since our analysis reTrequency component at the position (I)?Cf}tb atom. is as-
gards the field as an operator, it correctly describes importanstumed to be weak enough that the atom remains ir,1 its ground
phenomena such as spontaneous decay. tate with nearly unit probability.

Throughout the paper, we will assume for the sake ofS

L ) ) . i If the intensity of the incident wave is low enough that the
simplicity that the atoms are trapped in a simple cubic lattice , i, of the atoms is not perturbed much, then in the zeroth
A detailed discussion of the crystallography of optical lat-

. ; . order approximation, we can assume that each atom moves
tices can be found in Ref21]. In our calculations, we as-

sume that the atoms have been trapped by some mechani%l?rmonica”y With ogcillation frequenay, as it would in the
that need not be specified in advance. Since the movement 8PSENCe of any incident wave,

each atom is typically confined to a small region centered

about the equilibrium pqint of its potentjal well, it is valid to ri(t)=ro cosat+p—isin5t. (4)
approximate the potential well parabolicallg2]. We make Mo

another useful simplification, one that is generally adequate

for the resonant scattering treated here, that each atom hktgre,r, represents the initial displacement gmglthe initial
only two electronic energy states, namely, an excited statgiomentum of the atoaround the equilibrium poin®;,

|E) and a ground statéG). This is a good approximation of its trapping potential. By evaluating the incident figld
even when the atom has a degenerate ground state, i.e., whanthe instantaneous location of the moving atom, substitut-

the magnetic quantum number for the ground state is NONng in Eq.(3), and noting that@;, as is typically the case

will see a different confining potential, the transition rate gieady state solution fay, :

from one such potential to another is rather low due to the

Lamb-Dicke constrainf23], and one can assume that only & . 1
one potential is present. bj(t)=— Te'kO'Ri"wtﬁ
We treat our probe beais,. as a plane wave with a unit yrilwe— @
amplitude, wave vectok,, and polarization vectoe, X @l (Ko-Tg)coswt+i(Kg- Po/Mmw) sinwt (5)
Eine=€oe'ko 1ot (1)  Since the harmonic motion of the atom in its potential well

leads to sidebands centered at frequencies that differ from

Then, the Hamiltonian of the system, composed of the atthe driving frequency by multiples ofv, the complex
om’s internal energy, its external mechanical energy, and inkorentzian factor in Eq(5) containing only a single driving
teraction with the probe field, takes the following fof@4]  frequencyw is approximate. More correctly, each sideband
in the weak field limit: contribution in this equation, which can be made explicit by
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expanding the second exponential in powers of i&;q)),( elkalr=rl

must have its own Lorentzian factor, with replaced by its G(r’r”“’):( I+ _gVV
center frequency. Such a correction, however, is likely to be ®

negligible wherny> » and when only the first few sidebands
that are well within the atomic linewidth are significantly =—2[(3 3ikg|r—r’ |—k lr=r'|1®)pp
excited. We will assume throughout our work that these con- ©

ditions are met.

4afr—r’|

When the atoms are excited by the incident light, they —(1—ikg|r—r'|— K2 |r r |2)|] el
radiate as point dipoles, and the scattered fil¢r,t) may ¢ 4mr —r'|3’
be expressed as a superposition of such dipolar contributions.

In calculating a quantum-mechanical expression for the ©)

mean scattered light intensity, we need the positive and nega
tive frequency componenE( )(r,t), of the scattered field
operator. The Heisenberg equation of motion tﬂﬁﬁt)(r,t)
obeys is the following:

wherep=(r—r’)/|[r—r'|, k;=wlc, andl is the unit dyadic.
When the observation pointis far from the source point’,

as always valid for a scattering problem, we may make a
far-field approximation tdas,

- ol
ﬁZE(+)(r t) , (1t k(=)
VX[VXES (r,0]+ R G(rr' w)=(1-rrz—e : (10)

Use of the dyadic Green'’s functiqi0) enables us to solve
- _dz Bibi(1) 50— R, —r,(1)) Eq. (7) for the scattered field

R »)dr
,w)= w
° c\2m '

bi(t) 6(r —R;—r;(t)), (6)
fﬁu i(t)o(r— i_ri(t))ei;)tdt

where the summation has to be performed over all lattice

sites and a binary numbg has been introduced to specify e“‘~

whether theith site is occupied §;=1) or unoccupied 8; = cz\/z_(

=0). In deriving Eq.(6), we have used the fact that since

0> w, the time oscillations of the electronic displacement of

each atom are approximately those imposed by the external

field in the absence of any atomic motion, $(t)=

— w?b;(t). Substituting expressiolb) for b; into Eq. (11) yields the
When transformed to the frequency domain, E).be-  following scattered field in the first Born approximation:

comes

Zﬂi

Xf bi(t)ei;t—ik;i[Ri+ri(t)]dt_ (11)

Sy, ~ w? 1 de 1
Es (I’,(JL))Z——2 - -
7 2 c2 2m 1h yti(wg—w)
VX[Vng”(r,Zo)]—(—) E{(r, o)
C X(l_rr |k rE Bel(ko k> r) R;
47Tw

dE Bi f bi(t) 50— R —ri(t))e“dt, (7) - .
XJ ei(ﬂ’_“‘)t‘*’i(ko_k;r)'ri(t)dt_ (12)

where the one-dimensional Fourier transform has been de- The preceding equation may be expressed in terms of the

fined as lowering and raising operatorg;(t) andaiT(t), for the pro-
jection of the harmonic displacement veci@d) along the
scattering vector

~ 1 .
fk=—ffxe'kxdx. 8 ~ -
) V2w ) ® ki(w)=ko—kgr, (13
B B by writing
We can solve foE{")(r,w) by using the dyadic Green’s i ~
function [27] for the vector Helmholtz operator on the left- i(kg—kgr)- ri(t)zikl(w)~ri(t)zul(t)a?—u’{(t)ai ,
hand side of Eq(7), (14
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whereu,(t) =ik, (h/ZmZ)ei;‘. Upon substituting Eq.14)
into Eqg. (12), we obtain the following expression for the
scattered field operator:

d-e 0? 1 1

) e Ty = _
B (M) =" 53" 2 om 7+ (ao—a)

PO .
X(|—rr)~dre'k“’r2 Bielkl‘Ri
i

X f dtedu®-au} Mgi(@— o)t (15)

Equation(15) will serve as the starting point for our calcu-
lation of bilinear scattered field averages.

[ll. CALCULATION OF BILINEAR FIELD AVERAGES

Under narrowband detectid28] the observed scattered

light intensity is proportional to the quantum expectation

value,(E{7)(r,w) - EL7)(r,w)) in the initial state of the har-

PHYSICAL REVIEW BE57, 056614 (2003

FIG. 1. The sideband generation, where the lower, upper, and
dotted horizontal lines represent the std@5®|0), |G)®|n), and
|[E)®|m), respectively.

(ES(r,0)-ES)(r,w)
:e—(kiﬁ/me)|:z Bif dTldee—i(Z)—w)Tz
i

"1 ki
X >, —( !
n=1 n!

n
_ e—inZT2+z ﬁiﬁje—ikl-(Ri—RJ)
2mw i#]

monic motion of the centers of mass of the trapped atoms.

Let us assume initial state for each atom to be its ground

state. Then, we may write with the help of E45)

(ES)(r, ) EL)(r,w)
d_) ) R
i) \c) 27 2r (wg—w)? rzl(' rm)-d

X2 Biﬁjefikl'Ri“kl'Rif dtdt e (@ o)t+i(e—w)t’
B

% <e—u1(t)a;r+ uj (t)aiea;ul(t’)—ajuf (t’)>

=B(w) E ,BiJ dtdt/e—i(;—w)m(a—w)t’
1

w o~ (KGh/2ma) + (Cn/2ma)eiet=t)
+> ﬁiﬁje_ikl'(Ri_RJ)f dtdt’ e i(@-@)t+i(e—w)t’
iz

xXe~ kiﬁ/2mg} , (16)

where we have absorbed all coefficients in front of the first
summation sign int@3(w). We have also used the fact that

B2=p;, sinceB;=0 or 1, in the first sum. Next we expand

exf (Kh/2mew)e~"*(t=)] into a power series, and introduce
two new parameters

1
=5 (t+t"),

T12

17
T,=t—t’, (18

which permits us to rewrite Eq16) as

X f dTldee“(:"‘“’)TZ]
_ e%kgh/m;)zﬁ
K2t

n
_) So—w+nw)
2Mw

X

S 63, b

; (19

+3 i R a5 w)
1#]

where we have, for brevity, droppdl(w) as well as an
overall factor equal to the total observation time. The coef-
ficient exp- kﬁh/me) is the Debye-Waller factor that origi-
nates from the relative motion of the scatterers around the
lattice siteq29].

Let there be altogethéd atoms trapped i, lattice sites.
Usually N/Ng is small, around 1094 30]. Then Eg.(19)
takes the form

(EO)(r,0)-E(r,0)
K2h

n
_> S(o—w+nw)
2Mmw

NS 1(

n=0 n!

Oce—(kfh/sz)

: (20

+2, Bife M RTRI S0 —w)
B

where (o — w+ n;) represents line emission at a sideband

of frequency (w—nw). The origin of sideband emission can
be traced back to Raman scattering, as shown in Fig. 1. By
absorbing a photon of frequenay, an atom gets electroni-
cally excited from the ground staf&s)®|0) to a higher
energy level|E)®|m), then jumps back to a vibrationally
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excited statéG)®|n) in the electronic ground state, giving significantly excited33]. Sincefik¥/2me is proportional to

up a photon with frequency(—nw), n>0. Here,|0) rep-  the squared ratio of the oscillation amplitude of the atoms to
resents the ground state of harmonic oscillation of the atonthe optical wavelength, the number of scattered sidebands
and |n) an excited state. In experiments anti-Stokes sidethat are observed is a strong indicator of how well the atoms

bands at frequencieso(+ nw) are also found32], because are localized, on the scale of an optical wavelength, in the

in reality not all atoms are in the ground state of harmonicoptical potential wells. The more tightly the atoms are con-

oscillation. fined, the smaller that numbg22]. This is often referred to
Equation(20) reveals two distinct kinds of scattering. The as the Dicke effect34,35.

first is elastic scattering, represented by tve0 term of the

first sum and by the entire second sum. The second sum IV. NUMBER OF TRAPPED ATOMS AND ANGULAR

gives the usual Bragg scattering, which is weak for small COHERENCE OF SCATTERED LIGHT

occupation fractions. The second kind of scattering is inelas-

tic scattering, represented by the: 0 terms in the first sum. . . i .
g. 'ep y aults of the preceding section. First of all, the difference be-

When an atom is raised from the ground state to an excitet i . ideband f s tell the st
state by the absorption of a photon from the incoming wave WEEN WO SUccessive sideband frequencies (efls us the struc-

it can return to its original state by emitting a coherent photure of the optical potential at each lattice site through
ton of the same frequency as the incident wave. Alterna=x/m. Second, from the Bragg scattering term in E2{),
tively, the excited atom can relax back to an excited state ofhe lattice constant can be measured by recording the angular
harmonic motion in the electronic ground state, in whichvariation of the intensity at the central frequency. The first
case the scattered photon has not only a different frequendgrm of Eq.(21) provides a uniform background in the an-
but also has no definite phase relation with the incidengular pattern of the scattered light intensity, and can be easily
wave. This is why radiation scattered at the central frequencgubtracted out. We now consider two other useful results that
is enhanced by a coherent interference of contributions fronéquire a somewhat more detailed discussion.

different atoms, while there is no such interference at any of

the sidebands, as clearly seen in E2{). A. Number of trapped atoms

, quatlon(ZO) repre~sents the gxpectatpn v'aIue of the !|ght The number of trapped atoms can be inferred experimen-
intensity at frequency» from a given realization of the site )y py using the Bragg diffraction techniq(ig6]. Here, we
occupation. We must average Bg0) over ;8 to arrive at  present another simple way to obtain this information. In the
the average intensity that one would observe in any practicalxact forward scattering direction of the incident wave, we

Several important conclusions can be drawn from the re-

experiment. It is readily found that for | measure the intensity of the scattered light at the central fre-
quencyl .55 @and the intensity at the first sidebahg,,. For
_ _ 2_ 2 ~
(BiB;)=(Bi){Bj) = (NINo)*= o, the central frequencw=w, k,;=0 for forward scattering,

and so from Eq(21),
assuming that each site is equally likely to be occupied. Us- a2l

ing a single pair of triangular brackets to denote both a | o1as N2
guantum-mechanical expectation value and an average over
the fluctuations of the site occupation, we find the followingFor the first sideband, on the other hatg= w/c for for-

mean scattered light intensity: ward scattering, and so again from ER1),
- - = ~ “o1Kn " wh -
EOr @) B @)xe i NS | e lineraN > —— e “hane,
n=0 N\ 2me mc?
> 5(5)—w+n5)+2 (N/Ny)? By taking the ratio of the two, we have
=y .
_ lelas @h e
Xefikl-(Riij)g(Z)_w) ) (21) linela 2mc? ,

) o ) ] where w>w and N>1 are assumed. Thus, by measuring
Note that in a statistical sense, we have a uniform lattice on

an average, one that should produce Bragg scattering. " 'arsn’sl'”e'a’ andw, one can deduce the number of trapped
second sum in the above square brackets is just the math- ’
ematical expression for that scattering.

The nth sideband contribution to the mean scattered in-
tensity is weighted by a factor oﬁki/me)n in Eq. (22). We may calculate the degree of angular coherence of the
This means the part of the energy radiated in the sidebands $§attered light by considering the field correlation along two
significantly controlled by the potential well. The stiffer the observation directions, specified by unit vectorndr’. By

potential, i.e., the largew, the fewer the sidebands that are taking the scalar product d.")(r,®) given by Eq.(15)

B. Angular coherence of scattered light
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with its Hermitian adjoint evaluated along thé direction, (EC)(r,0)-ELV(r, w)
and then taking the expectation value of the resulting bilinear

operator product in the initial ground state of the center-of-  (hlAma) (K24 K12 i(k!—kq)-R; 1
mass motion of atoms, we obtain ~e 1 Z piet '; ol

(BO)(r,0) B 0) Ao\ - _
X| kik; —=| S(w—w+nw)
2Mw

~z Biﬁje—ikl-Rini.ij fdtdt/e—i(:u—m)tﬂ(z)—w)t'
B

. a—iky-Ri+ik Ry o7
X<e_ul(t)ai1+u~ic(t)aiea;rui(tr)_ajui*(t;)>' (22) +% B|B]e 1R j 15((0 a))‘| (26)

where we have suppressed for brevity an overall coefficienfyhen averaged over the occupation of lattice sites, the mean
on the right-hand side. The preceding average has two CoRyyrrelation function26) becomes

tributions. One is from the fields that originate from the same
atoms, corresponding to the j terms. The other is from the

interference of the fields radiated by different atoms, corre- (B, 0)- BV 0)

sponding to the #j terms. By recognizing that the operator B 1

whose expectation value is needed in E2R) may be ex- ~ e~ (WM (G| g S (kKL /2ma)”
pressed in terms of the coherent state displacement operator n n!

D(«) [37], we can evaluate that expectation value rather
simply. Fori=j, one has X 80— w+nw) D, ekik)R
i

<efu1(t)a?+ uy (t)aiea;ui(t’)fajui* (t’)>

+:8(%E e*ik1~Ri+iki-RJ5(:u_w) ) (27)
=(Di[ —uy()]D;[uy(t")]) ')
’ ; ‘;(t'ft)_L 2. 12 ; . . .
= el(kakg/2mo)e kgt Tama] (23) By adding to and subtracting from the double sum in Eq.
(27) terms withi=j, we may reexpress it in terms of unre-
while, wheni # | stricted sums over all lattice sites as
(e a0 TG CRIGAN=SIC)

_ —ul(t)aT-%—u*(t)a alul(t)y—aul* (") _ , 1 o
<e e '><ej 1 "1 > Ne—(h/4mw)(k§+k12) ,802 m(klkiﬁ/me)”
n .

— o h(G k%) Ama. (24)

X 8(w—w+nw) >, elki—k)Riy g2
i

S et

With these results, expressiop?) takes the form

(ESN(r,0)- BN 0) X

Ej‘, e‘ki-Rj) dw=w)= 52 el (ki—k)Ry

”[2 ﬁiei(ki—kl)-Rij dtdt el(@=- @)’ -1
i

X S(w—w)|. (28

« e—ﬁ,(k§+ ki %)/4ma+ (kqk} ilzma)el @t =9

~ These lattice sums are simple geometric-series sums and are
+2 3i3je—ik1-Ri+ik,-'~ij dtdt’el(e—)t' -1 thus easily evaluated. If we choose the origin of the coordi-
i#] nate system to be at the center of the lattice, and there are
K N,+1, Ny+1, andN,+1 sites along the three sidg38],
X e—ﬁ(k?fkiz)/“mw}_ (25)  then we have

We now expand exjkk.7i/2mw)e' “t’ 9], as before, > ek Ri=0(k), (29
into a power series, and introduce the sum and difference '
timesT,;=(t+t')/2 andT,=(t—t’). An integration ovefT,
then reveals the presence of sidebands in the correlatiomhere ® (k) is the three-dimensional grating function de-
function (25), fined as
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(k)= sifk,a(Ny+1)/2] sinfk,a(Ny+1)/2] (EV)(r,0)-ELV(r, @)
sin(k,a/2) sin(k,a/2)
fil2mw)k? 2 ~ —
sirfk,a(N,+1)/2] ~ g~ (h2mo)g) g 2 (K27/2mw)"8(w— w+nw)Ng
sin(k,a/2)
+B502(ky) 8(0— )~ B5(@— ) No|, (31)
Using this sum formula, we may write down for the cor-
relation function where we have used the result th@i(0)=(N+1)(N,
+1)(N,+1)=Ngy, the total number of lattice sites. The
(EC)(r,w)-ELD(r, w) mean intensity along’ is obtained by replacingin Eq. (31)
by r'.
n . . .
B (k2 With the help of these expressions, we may write down an
~ g (RAmo) (kg i) Bo; ol (klklz E) explicit result for the degree of angular coherengg;, de-
fined as the ratio
-~ PRY= r_ 2¢o/7 n A
Xé(w—w+nw)O(k;—k;y)+ Brd(w—w) Yeor(ToF")
X[®<ki><—kl>—<k1—kl>1]- (30 (B () B 0))
VB @ B ) E G B a)
Expressions for the mean intensities along the two obser- (32

vation directions now follow from this result when the two If one only looks at the central frequency, i.e., the incident

directionsr apdr’ are set equal in Eq30). The mean in-  frequencyw, then the explicit formula fory,,, assumes the
tensity alongr takes the form form

[(1=rr)-d]-[(1=r'r")-d] (1—-Bo)O (ki —ky)+ Bo® (k1) O(—ky)
|(1=rr)-d[[(1=1"1")-d| (1= Bo)No+ Bo®2(k1)V(1—Bo)No+ Be®2(kp)|

(33

Yeon(@) =

The degree of angular coherence takes a somewhat simplemctions of which® is composed exhibit similar depen-

form for the first sideband frequeney— o, dences. In spite of these vanishing angular widths, however,
the grating function itself does not vanish in the limit
o [(|—FF)-d].[(|—F’F’)-d]@(ki—kl)\ N,,N,,N,—¢. The locations of the principal maxima of the
w—w)= ~~ ~ ~ . i i r__ -
Ycoh (=) -d||(1=F't")-d|Ng ‘ grating function® (k1 —k,) correspond to the Bragg scatter

(34) ing condition, for which both the denominator and the nu-
merator in Egs(33) and (34) approach infinity at the same
The angular coherence function exhibits a dependence on thate, leading to a finite/.,,.
number of lattice sitedl,,N, ,N, even in the limit that they We shall now display some of our results in graphical
go to, but that dependence is principally through the mul-form. We choose the incident wave vector and the first scat-
tiple occurrences of the grating functiéh in Egs.(33) and tering direction to be along the axis: ko—koi r=2 The

(34). According to its definition, the grating functid@9) is dsecond scattering direction is then selected to lie inxthe

a product of three one-dimensional grating functions depen
ing separately orNy,ky, Ny.k,, andN, k. The first of plane at angle with the first,r’ = sin 6+ coséz. Therefore,

such functions, from Eq. (13), k;=0, k;=Kko(—sin6,0,1—cosé). Since the
orientation of the dipole moment matrix elemeahbf each
simk,a(Ny,+1)/2] scatterer is, in general, not fixed, in any experiment involv-
sin(k,a/2) ' ing many scatterers, we must regatés randomly oriented

in a statistically isotropic manner in space and thus average
has principal maxima &,a=2pw and secondary maxima at all expectation values of interest over all possible orienta-
k.a(N,+1)=2qg, wherep is any integer, whileg is any  tions ofd. We do this averaging numerically.
integer not equal to a multiple of\;+1). Both kinds of We see in Fig. 2, whera/\ =1.7, itis only in the forward
maxima have an angular width of the order\d{N,a) that  direction (9= 0) that there is perfect coherence, but there are
becomes infinitely small in the limiNy,—oc. The other two secondary peaks distributed betwegrn O and 6=m. The
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FIG. 2. Degree of angular coherence at the central frequency FIG. 4. Degree of angular coherence at the first sideband with
with a/A=1.70 and 101 sites on each side of the lattice. a/A=1.0 and 101 sites on each side of the lattice.

forward peak rather trivially meets the Bragg scattering con-y.,(w— ). Sincew/c is a very small number, however,
dition kg— ks= G, whereG is a reciprocal lattice vector. The the incident and scattered waves have practically the same
secondary peaks result, by contrast, from only an imperfedrequency.

satisfaction of that condition in the-z plane, which implies One significant difference between the coherence patterns

a correspondingly imperfect coherence between the forwarlt ,, and w — w, apart from the obvious Bragg enhancement

and obliquely scattered beams. In Fig. 3, whate=1, per-  for the former, is that in the forward scattering the degree of
fect coherence is obtained in both the forward and baCkwargngular coherence ab— o decays rapidly with the angle

directions. The backward coherence always exists whenev Istween the observation directions. This behaviorygf,
a/ is an integral numbgr, un_der this co_ndmon the backward.,; e nderstood based on the Van Cittert-Zernike theorem
scattered waves are entirely in phase with the forward wave?

MO - R 39], according to which light emitted by a collection of
The Bragg condition is satlsf|ed for one more direction in thespa’tially distributed incoherent radiators, such as those we
X-z plane, that is along the axis (6= 7r/2). This shows up

; X have here at all of the sidebands-nw,n#0, will acquire
as a secondary peak @t /2. The fact thaly.| is strictly @ d

I han 1 h d ih th ; e d d IEartial spatial coherence on propagation in a manner de-
ess than 1 has to do with the scattering-angle dependeltineq py a Fourier transform relation. The angular width of
angular averaging of the dipole-moment orientations in Eq

~1this coherence around the forward direction is of the order of
(33), even though the purely phase dependent factor, whicll\ » “\yhich is about 0.01 rad in Fig. 4 and 0.006 rad in
depends on th®’s in that equation, is exactly 1 for this case g ’s "since the total field radiated by a discrete but periodic
as for¢=0 and. __array of atoms, even when emitting with random phases, is
We plot the degree of angular coherence at the first sid€;oherent along any two directions that obey the Bragg con-
band, y¢on(@—w), in Figs. 4 and 5. Unlike the case of dition, a similar structure is obtained around each Bragg di-

Ycon(®), there are no atom-atom interference terms forrection. This may be seen as the additional structure in the

1 T T T T T T T T 1 T T T T T T T T
0.9 -r 5 09 | 1

08 4 08 4

07 4 07 4

0.6 [ 1 0.6 [ 1
05 | 1 05 | 1

04 04 4
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01

0

FIG. 3. Degree of angular coherence at the central frequency FIG. 5. Degree of angular coherence at the first sideband with
with a/A=1.0 and 101 sites on each side of the lattice. a/A=1.70 and 101 sites on each side of the lattice.
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angular coherence function aroundlé==/2 and = in  into the Schrdinger equation generated by the Hamiltonian
Fig. 4. (35) and then performing appropriate scalar products, we ob-
tain the following differential equations fob,(t) and
V. NARROWING OF SIDEBAND SPECTRAL LINES b;”e(t):

It was found in Ref[33] that the spectral widths of the CEh ey ke fwyot
sidebands are actually narrower than that expected, based on 17Da(1) z‘g by (O(E,N.0VI[G,n.k, €€, (37)
a free-atom theory. This line narrowing can be traced to the

Lamb-Dicke effect that relates to the spatial localization of iﬁb;”e(t)zbl(t)(G,n,kve|V||E,N,O>e*i‘”12t, (38)
the atoms in optical traps. The present section is devoted to
an analysis of this phenomenon. where wy,= wy+ (1 —N) w— wy -

As we saw in the preceding section, the power spectrum, Equation(38) may be mtegrated in time when the form

+
(E{)(r ) EL7(r,w)), of scattered light has a Lorenzian 1, ()=~ is substituted into it and the initial condition,
frequency dependence, b5%(0)=0 is used, with the result

—lwyt—yt

ot o 1
B(w) ’)/2"‘(000_(0)2, b;“ ()= #G,n,k@!VdE,l,O}W. (39

which gives it a characteristic widtp. In our calculation, we We can now calculatey by substituting this expression for
have assumed thatis a constant, independent of the exter-b *®into Eq. (37),
nal state of the atom. Now we want to calculate this quantity >

more carefully to see if that is indeed so. ,1- foggt+ ot
As before, we assume the atom has only two electronic =~ —ify= Z ' 7 =[(G,n .k, e V|[E,I,0)| i
states, the ground stat€) and the excited statgE), and 12 (40)

lives in a three-dimensional potential well described accu-

rately in the parabolic approximation. The Hamiltonian for  Using the approximation of Ref[41] to replace (1
the atom interacting with the electromagnetic field has the-gi®12*7)/(+iw,,) by the sum of aé function and a

form Cauchy principal value form, we can thus calculateIts
real part gives the transition rate from an excited state to a
H =% wo| ENE| + P2/(2m) + yR2/2+ V|, + >, oy a, a, lower state, and its imaginary part the radiative level shift.
Ky voe Both the radiative decay and level shift are characteristic of a

(39 discrete state coupled to a continuum. Since the transition
. rate is all we care for, however, we need to retain only the
where the operatorﬁaﬁv} and{ay } are the photon creation real part of y [42]. By replacing the sum ovek, by ar):
and annihilation operators. The interaction between the atoftegral, valid in the limit of infinite quantization volunie®
and the vacuum fiel&, ., described by the terd;, causes [37], we obtain the result
a spontaneous relaxation of the atom from an excited state to
a lower state by the emission of a photon.

Let us assume that initially the atom is in the internal y= —f dk 2 ( ) [{G.n,k,€V,||E,1,0)|?
excited stat¢E) and in the external motional stdie, while
the field is in the vacuum stat@). Because of its interaction
with the electromagnetic field, the atom tends to relax into
the internal ground statg5) and possibly another external
state|n), emitting a photon of wave vectdr, and polariza-
tion e in the statelk,e). We find it convenient to use the
Weisskopf-Wigner methof40] to construct an intermediate
state|#(t)) as the following superposition of the initial state ~ (G,n,k,€[V||E,l,0)=(G,n,k &l —id,,- > viajee'kif
and all possible final states: J

X 8wy, —wo—(1-n)w). (41)

The matrix element oV, present in Eq(41) reduces in
the rotating-wave approximation to the form

|¢(t)>:b1(t)|E.|,0>e_i(Eltm) +idT 2 v a ee K i""|E,1,0),
+> by (t)|G,n,k,e)e EM  (36) (42)
K, e

where @, +d}) is the atomic dipole operatory;

i —e N k80)=
Wlt-h the caveatd,(t)=e " andb,"(0)=0. The parameter =\2mhe; /L%, andj is an abbreviated notation to label a
v is the decay constant, areh=E+(I+1/2)hw andE;  particular wave-vector-polarization mode of light. Ordy
=G+ (n+ 1/2)ﬁw+hwk are the energy eigenvalues of the contributes to the preceding matrix element. Assuming that

two states/E,l,0) and |G n,k,€). By substituting Eq(36)  d,p is alongz, we then have
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(G K, &V||E,1,0)=id (2 & 9w (nle R T|ly. (43) where y,=(2d%k%/3#) is the Wigner-Weisskopf natural de-
s v v cay rate for an isolated atom at rest dpdl , involve certain

I' functions

Substituting Eq(43) back into Eq.(41), and splitting thek, r 12T 2

integration into its radial and angular parts, we obtain - (n+ 1T (n+ny+2) (49)
o T(netng+n,+52)
I'(n,+21/2)I"(n,+1/2)
d fdQ z RN = y X
y= o 5 [ done | e o0l ) ot ) 50
X 8wy —wo—(1—N)w), (44) In an isotropic harmonic potential well, all excited states

with the same value for the sum afi(+n,+n,) are degen-
where dQ is the solid angle element associated with theerate. Therefore, the transition rate corresponding to a radi-
direction ofk,. This is the general formula for the decay ated ph_o.ton with gwa_ve.nlumbtev:(w—nw)/c. Is the sum
rate. of transition rates into individual components in the subset of

Let us assume that initially the atom is in the ground™x:Ny:N; values that add up to:

motional state, |=0, for which the matrix element
(nle"™%""|0) can be evaluated by noting that - S
x T Hy ™z

n+n +nz
h | %
ik, r=i \/ ==K, (ax+ap) +i \/ —=(k,y)(ay+a)) IM]- (51)
2Me 2mw

7 For a typical experimental situatiod;;4ns< o, i.€., the
+i\/ —=(k,,)(a,+a)). (450  widths of the sidebands are narrower than expected, a fact
2me verified by experimentg33]. From Eq.(51), we can see that
the Lamb-Dicke effect is the principal contribution to this
In other words,e is a three-dimensional displacement narrowing. Although the degeneracy of the external atomic

operator[37], which produces a three-dimensional coherentstates tends to oppose the line narrowing, it is overwhelmed
state when operated on the motional ground state. This oliey the Lamb-Dicke contribution. The physical origin of this

3
k2
lﬂ?rans. ')’08 e 2me)

kzﬁ
me

1
ny!'ny!n,!

ik,-r

servation enables us to write down narrowing is the small overlap between an excited state and
the ground state of harmonic motion.
. i 1 . no\™ When the optical potential well is so stiff that—«, then
(nje”™* T0y=e""* m‘”ﬁ —iky,x P only n,=n,=n,=0 will contribute to the sum in Eq51).
My Ny N2 Me We then have

X

n n,
_ik WIL) y(_ik L) I‘prans Yo- (52)
vy - vz - .
2Mw 2Mw . . . . .

Physically speaking, in this case the atom is tightly trapped
(46) in the ground state of the harmonic motion and therefore
radiates like a stationary radiator.

With this result, we can go on to expregsas
VI. CONCLUSION

2 f k3dQe"“‘ ome T 1 I_n this paper, we have discussed Born scattering from an
nxlnyI n,! optical lattice formed by trapped atoms, and found that by

o o studying the scattered intensity, we can obtain important in-

X (Ky) 2™(Ky) 2Y( k) 2"2(F/2Mew) ™ Ny Tz ekve)z, formation about the lattice, such as the lattice constant, the

stiffness of the individual optical traps, and the number of
(47) trapped atoms. We also studied the angular coherence of the
o scattered light both at the frequency of the incident light and
where we have sdt=k,=(wgo—nw)/c. Introducingd and at its motional sidebands. Finally, we explained an observed
&, the polar and azimuthal angles lofrelative toz, we can  harrowing of the sideband spectral lines as an essential con-
perform the SunE(z- €, o [28] and show it to equal sfg. ~ SCIIENCE of the Lamb-Dicke effect,

. ; . . Born scattering is a powerful tool to monitor the motion
This resylt when substituted into EC{l?)_Ieads to a simple of the trapped atoms. It does not, however, give us much
angular integral that can be evaluated in closed form,

insight into how light propagates inside an optical lattice.
One must take into account the higher orders of scattering if
o (k22ma) 1 (ﬁkZ/ZmE)“x*”y*”ZI | the nature of light propagation inside a strongly scattering
n'ny!n,! o medium is to be fully understood. We turn to this question in
(48)  paper 1I[10].

3
7”)’8
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